>>Sejarah

Pada abad ke-17, Perancis ‘sangat beruntung’ karena mempunyai seorang matematikawan yang jenius, yaitu Blaise Pascal. Ia dilahirkan pada tahun 1623 di provinsi Auvergne. Pada usia kanak-kanak, 12 tahun, ia telah menemukan rumus-rumus dasar geometri yang hingga kini masih kita pelajari. Pada usia 14 tahun ia aktif mengikuti pertemuan mingguan kelompok matematikawan Perancis yang kelak kemudian, 1666, menjadi Akademi Perancis.

Pada usia 16 tahun ia telah mendalami geometri proyeksi. Dan, pada usia 25 tahun menulis buku tentang irisan kerucut yang sangat lengkap. Anehnya, beberapa temuan itu diawali dengan sakit gigi. Namun, serta merta solusi-solusi ditemukannya sakit gigi-nya lenyap. Ia meninggal pada usia 39 tahun (1662) dan dimakamkan di dekat ayahnya, Étienne Pascal yang juga matematikawan.

Tulisannya tentang irisan kerucut kelak kemudian dipelajari oleh matematikawan terkenal Descartes dan Lyibniz. Descartes pernah menunjukkan keheranannya bahwa gagasan itu berasal dari seorang ABG. Bahkan, ia menduga bahwa gagasan itu ditulis oleh ayah Blaise Pascal.

>>Aritmetika segitiga pascal

Pada usia 30 tahun ia menyusun aritmatika segitiga yang masih kita kenal kingga kini. Ia menyususun deretan bilangan seperti disajikan pada Gambar 1. Kecuali bil

angan-bilangan yang berada pada baris paling atas dan kolom paling kiri, setiap bilangan itu merupakan jumlah dari bilangan-bilangan yang terdapat pada kolom di sebelah kirinya yang terdekat dan yang berada di sebelah atas dari bilangan itu. Misal 20 = 10 + 6 + 3 + 1. 21 = 15 + 5 + 1 atau 21 = 6 + 5 + 4 + 3 + 2 + 1.

Anda tentu dapat bermain-main dengan segitiga pascal ini. Perhatikan sembarang bilangan yang tidak terletak pada baris atau kolom pertama. Setiap bilangan yang ada dalam segitiga pascal merupakan jumlah dari dua bilangan yang berada tepat di sebelah kiri dan yang tepat di atasnya.

Contoh:
2 = 1 (kiri) + 1 (atas)
5 = 1 (kiri) + 4 (atas) atau
5 = 4 (kiri) + 1 (atas)
126 = 70 (kiri) + 56 (atas) atau 126 = 56 (kiri) + 70 (atas)
Sifat seperti itu, Anda kenal dengan istilah sifat komutatif pada penjumlahan bukan.

Mari kita lihat bilangan-bilangan yang berderet pada arah diagonal. Kita mulai dari pojok kiri atas. Di situ berderet “1 – 2 – 1″. Anda yang telah mempelajari bentuk  atau  tentu tahu tahu bahwa   dan (a – b)^2 = a^2 – 2ab + b^2
Nah, koefisien dari  adalah 1, koefisien dari  adalah 2 dan koefisien dari  adalah 1. Jadi, deretan 1 -2 – 1 merupakan koefisien dari bentuk  atau
Sementara dengan deret “1 – 3 – 3 – 1,” ini merupakan koefisien dari  atau .

Bagaimana dengan deretan yang lain?

Ya, itu merupakan koefisien bentuk .

Selain pola-pola cantik di atas, ada pola-pola aritmetika cantik lainnya dengan bilangan-bilangan pada segitiga pascal. Anda bisa mencoba menemukannya sendiri. Semuanya telah ditemukan Pascal pada usia 30 tahun yang hidup sekitar 400 tahun yang lalu.

Blaise Pascal tidak berumur panjang. Ia meninggal pada usia 39 tahun. Masa hidupnya juga tidak secemerlang dengan temuan-temuannya. Pada usia akhir dua puluhan (tahun 1650) ia merasa hidup dengan matematika kurang tenteram. Maka ia menarik diri dari kehidupan sebagai matematikawan dan fisikawan ke kehidupan kontemplatif.

Tetapi, setelah tiga tahun kemudian ia kembali ke kehidupan matematika lagi dengan menggarap aritmatika segitiga, melakukan percobaan tentang tekanan fluida, serta melakukan korespodensi dengan Fermat untuk meletakkan dasar-dasar teori probabilitas.

Pada tahun 1654 Ia mengaku menerima teguran Tuhan, bahwa kehidupannya sebagai matematikawan tidak menyenangkan Tuhan. Ia kembali ke kehidupan religius kontemplatif yang sungguh-sungguh. Namun, sekali lagi, pada tahun 1958 ia kembali ke kehidupan matematikawan sambil menahan sakit giginya. Ia memandang sakit gigi itu merupakan peringatan Tuhan akan kehidupannya. Karena itu setiap akan bekerja ia berpuasa selama 78 hari lebih dahulu.

Masa empat tahun terakhir dalam hidupnya dipersembahkan untuk menggarap geomatri, terutama kurva sikloida. Ia juga mempersembahkan satu model matematika bagi almarhum ayahnya yang limaçon of Pascal-suatu spiral lingkaran yang melalui suatu titik yang tetap. Blaise Pascal memang seorang pendoa dan matematikawan cemerlang.

About haniahfebri

I Love Math

3 responses »

  1. Agsas says:

    Jika anda menjumlahkan secara diagonal dengan garis lurus dari bawah ke atas atau dari atas ke bawah dalam segitiga pascal, maka anda angka menemukan sebuah deret angka yang sangat terkenal. Fibonachi. salam ilmuan….
    0 + 1 = 1
    0 + 1 = 1
    1 + 1 = 2
    1 + 2 = 3
    1 + 3 + 1 = 5
    1 + 4 + 3 = 8
    1 + 5 + 6 + 1 = 13
    dst
    urutan hasil nya adalah 1,1, 2, 3, 5, 8, 13, 21, 33 dst… (Deret FIBONACHI)

  2. Good way of telling, and pleasant post to obtain information on the topic of my presentation focus, which i am going to convey
    in institution of higher education.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s